

Centre de Nanosciences et de Nanotechnologies

Séminaire

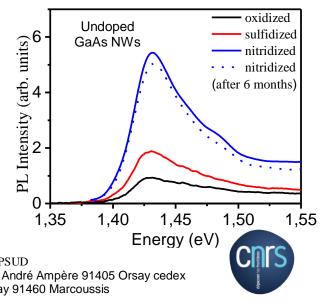
Mercredi 16 mai 2018 14h00

C2N, Site Orsay Salle 44

V.L. Berkovits

A.F.Ioffe Institute RAN, Saint-Petersburg, Russia

"NITRIDE CHEMICAL PASSIVATION OF AIIIBV SEMICONDUCTOR SURFACES: CHEMISTRY, POSSIBLE APPLICATIONS "


V.L. Berkovits¹, D.Paget² V.P. Ulin¹, P.A. Alekseev¹

¹ A.F.Ioffe institute RAN, Saint-Petersburg, Russia

²Ecole Polytechnique SNRS, Palaiseau Cedex, France

A wet chemical nitridation procedure in hydrazine–sulfide solutions has been developed for surface passivation of A_3B_5 semiconductors. For GaAs and GaSb this procedure allows to create a monolayer of GaN coherently bonded with surface atoms of these crystals. Due to high stability of Ga-N bond, the formed nitride minolayer protects the semiconductor surfaces against oxidation in atmospheric ambient. In also provides an effective electronic passivation. Chemical processes occurring in GaAs surface in the hydrazine-sulfide solution are explained. Some experimental results evidencing to chemical and electronic passivation of the nitridized GaAs surfaces are presented. Finally, a number of possible applications of the wet nitridation including passivation of GaAs nanowires are demonstrated.

Surface chemical nitridation of GaAs nanowires (NW) reduces the surface state density by a factor of 6 that gives rise to essential increase of the NW conductivity and microphotoluminescence intensity

UMR9001 CNRS-UPSUD site d'Orsay : Université Paris -Sud Bât 220 Rue André Ampère 91405 Orsay cedex site de Marcoussis : route de Nozay 91460 Marcoussis