

C2N General Seminar

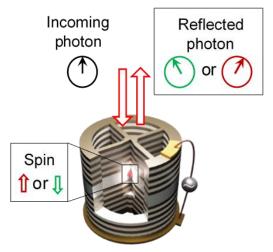
Friday July 12th 2019 - 10h 00

Amphitheater of C2N

Pushing photon-photon and spin-photon interactions to the single photon level

Loïc Lanco

(Department of Photonics – C2N/Université de Paris)


How can we make individual photons interact with each other, or with a single stationary quantum bit? I will show that efficient light-matter interfaces can be

developed to address these challenges, using semiconductor quantum dots in optimized microcavity structures. This led to a number of achievements in the last decade, including:

- The engineering of an effective photonphoton interaction, using an optical nonlinearity at the single-photon limit.

- The demonstration of an efficient spinphoton interaction, using the spin of a confined semiconductor hole as a stationary quantum bit.

The current efforts for realizing deterministic quantum gates and fundamental quantum experiments, based on a new generation of spin-based devices, will also be discussed.

Principle of a spin-photon interface: the polarization of reflected photons is macroscopically rotated clockwise or counter-clockwise, depending on the embedded spin state

Loïc Lanco was hired in 2007 as an Associate Professor at University Paris Diderot, after a PhD in Laboratory « Quantum Materials and Phenomena » (MPQ), and a one year post-doc at the Laboratory for Photonics and Nanosctructures (LPN, now C2N). His research activity focuses on light-matter interfacing at the single-photon level, using semiconductor quantum dot / cavity structures. He was nominated at the Institut Universitaire de France in 2019. He headed the Physics BSc in Paris Diderot from 2014 to 2018.

External visitors should be register beforehand in the following <u>link</u>

A joint research unit

