Soutenance de thèse

Mardi 13 novembre
14h00
Salle 44 – C2N site Orsay

Lu LU

“Piezoelectric nitride nanowires for energy harvesting and piezosensing”

Jury members:

Maria TCHERNYCHEVA
Directeur de recherche
Université Paris-Sud
Directeur de thèse

François JULIEN
Directeur de Recherche
Université Paris-Sud
CoDirecteur de thèse

Joel EYMERY
Directeur de Recherche
CEA-INAC
Examineur

Olga BOYKO
Maître de Conférences
L’Institut des NanoSciences de Paris (INSP)
Examineur

Elie LEFEUVRE
Professeur
Université Paris-Sud
Examineur

Guilhem LARRIEU
Chargé de Recherche
LAAS
Rapporteur

Guylaine POULIN-VITTRANT
Chargé de Recherche
Université de Tours
Rapporteur

Noëlle GOGNEAU
Chargé de Recherche
C2N
Invitée

Pascal CHERTIEN
Ingénieur de recherche
GEEPS
Invité

Abstract:

This PhD work focuses on the study of GaN nanowire-based piezogenerating devices. The main objective is to develop novel devices for mechanical-to-electrical energy conversion for energy harvesting and for detection of transient deformations. The active material of the developed devices consists of a polymer-embedded nanowire membranes containing either molecular beam epitaxy (MBE) grown GaN nanowires or metal-organic chemical vapor deposition (MOCVD) grown GaN microwires.

Three device architectures are explored, namely a piezogenerator with a rigid matrix, with a flexible matrix and a fully flexible device. Two home-made mechanical excitation set-ups are used to characterize the generators. In particular, tapping mode and continuous compression deformations are applied to explore the devices’ electrical performance in a large frequency range (from 1 Hz to 3 kHz). Based on these extensive experimental investigations, a panoramic summary of the generator transient behavior under various deformation conditions are made. A Schottky diode design and different versions of capacitive design for the piezogeneration are compared, and their equivalent electrical circuits are proposed. The piezogenerators’ working mechanisms are further validated by experimental investigations.

Finally, a process to fabricate fully flexible generators and sensors is developed and these flexible devices are extensively characterized. In particular, a flexible device composed of a matrix of active pixels is demonstrated.

For the MBE nanowire-based piezogenerators on a rigid substrate, the best recorded average power output density reaches 22.1 mW/cm². For the MOCVD microwire based flexible generators, the best recorded average power output density attains 16.5 µW/cm². The flexible devices show a good sensitivity to ambient vibrations and respond stably to finger tapping deformations. An average energy of about 100 pJ can be delivered by the flexible device under one finger tapping gesture.

Keywords: piezogenerator, nitride, nanowire, piezoelectric semiconductors