

Soutenance de thèse

Mardi 29 janvier

14h 00

Amphithéâtre IPVF

Daniel PELATI

" Elaboration of GaAs solar cells based on textured substrates on glass"

Jury members :

Ludovic DESPLANQUE	Maître de conférences	IEMN	Rapporteur
Fabrice SEMOND	Directeur de recherche	CRHEA	Rapporteur
Paola ATKINSON	Chargée de recherche	INSP	Examinatrice
Chantal FONTAINE	Directrice de recherche	LAAS	Examinatrice
Evelyne GIL	Professeur des universités	Institut Pascal	Examinatrice
Frank GLAS			
	Directeur de Recherche	C2N	Directeur de thèse
Fabrice OEHLER	Directeur de Recherche Chargé de Recherche	C2N C2N	Directeur de thèse Co-directeur de thèse

Abstract :

The increasing demand for clean energy has driven research toward higher efficiency and lower cost solar cells. Gallium Arsenide solar cells detain the record efficiency for single junction but the high cost of the substrate limits their applications. In this thesis, we investigate an alternative GaAs substrate based on a low-cost silica support coated by a thin (20nm) Germanium layer. The latter is near lattice-matched to GaAs and the layer can be crystallized with a high (111) texture using Metal Induced Crystallization (MIC). However this requires a carefully optimization of the deposition and annealing parameters. Here, we use a specially designed *in situ* optical microscope to optimize the annealing sequence. In particular, we identified two crystallization pathways, of which one should be minimized to obtain a good (111) crystalline texture. We then perform the heteroepitaxy of GaAs on this Ge seed layer using Molecular Beam Epitaxy, keeping the initial (111) crystal texture. We identify specific growth conditions for the twin- and defect-free growth of GaAs on Ge(111) surfaces. We also observe the growth of GaAs solar cells with 15,9% efficiency on monocrystalline GaAs(111)B substrate. The transfer to standard Ge(111) monocrystalline wafers and to our Ge-coated silica pseudo-substrates reveals doping issues related to the (111)A orientation of the GaAs, as well surface roughening due to grain boundaries in the initial Ge seed layer.

UMR9001 CNRS-UPSUD Boulevard Thomas Gobert 91120 Palaiseau

