C2N logo
C2N logo

Centre for Nanoscience
and Nanotechnology

UPsud logo CNRS logo
  • ['Photonique']

    (in french) Cristaux photoniques à gradient et dispositifs


      Eric Akmansoy.

    (in french)

    Cadre général

    D’une part, les cristaux photoniques à gradient permettent un réel contrôle de la propagation de la lumière par le profil de leur bandes photoniques[1]. De l’autre, l’optique à gradient d’indice (GRIN Optics) connaît un renouveau parce qu’elle offre de nouveaux degrés de liberté pour le « design» de dispositifs optiques [2]. Cependant, la fabrication du profil d’indice à gradient est difficile. Les nanotechnologies permettent de fabriquer facilement des cristaux photoniques, ce que nous considérerons en concevant des cristaux photoniques à gradient pour réaliser des dispositifs optiques à gradient d’indice. 

    Pour démontrer que les cristaux photoniques à gradient permettent de contrôler la propagation du champ électromagnétique, nous avons mis en en évidence expérimentalement un « mirage photonique» (cf. fig. 2)[1]. Nous concevons, simulons numériquement et caractérisons des cristaux photoniques à gradient pour des dispositifs à gradient d’indice (cf. fig. 1)[3, 4]). Par ex., nous avons conçu une lentille plate que nous avons caractérisée dans le domaine des micro-ondes [5]. Récemment, nous avons conçu et simulé une lentille de Luneburg [6] (cf. fig. 1). Pour concevoir ces dispositifs optiques, nous mettons en oeuvre une ingénierie des courbes iso-fréquences qui traduisent la relation de dispersion des cristaux photoniques. Notre but est de monter en fréquences vers le domaine optique. La démonstration expérimentale de tels composants est une fin en soi, car il y a un défi technologique à les fabriquer. Nous envisageons un grand nombre d’applications à ces cristaux photoniques à gradient pour la photonique intégrée, le laboratoire sur puce, la biophotonique, le pompage optique de matériaux organiques, etc. 

    Plan du stage

    Durant ce stage, des dispositifs à cristaux photoniques seront conçus et simulés numériquement. Ils fonctionneront dans différentes gammes de fréquences, de l’optique aux micro-ondes. Le but est de pouvoir les fabriquer et les caractériser par la suite. Ce stage pourra se poursuivre par une thèse.

    Bibliographie

    [1]    Éric Akmansoy, Emmanuel Centeno, Kevin Vynck, David Cassagne, and Jean-Michel Lourtioz, Graded photonic crystals curve the flow of light : An experimental demonstration by the mirage effect, Appl. Phys. Lett. 92, 133501 (2008) 

    [2]    Predrag Milojkovic, Stefanie Tompkins, Ravindra Athale, Gradient Index Optics, Optical Engineering, November 2013/Vol. 52(11), p. 112101-1 

    [3]    F. Gaufillet, É. Akmansoy, Graded photonic crystals for graded index lens, Optics Communications, Volume 285, 2638 (2012). 

    [4]    F. Gaufillet, É. Akmansoy, Design of flat graded index lenses using dielectric Graded Photonic Crystals, Optical Materials, Vol. 47, 555-560 (2015) 

    [5]    F. Gaufillet and E. Akmansoy. Design and experimental evidence of a flat graded-index photonic crystal lens. Journal of Applied Physics, 114(8) :083105, 2013. 

    [6]    F. Gaufillet and E. Akmansoy. Graded photonic crystals for Luneburg lens, IEEE Photonics Journal, vol. 8, 11 (2016) 

    [7]    CVI Melles Griot. Gradient-Index Lenses – http://pdf.directindustry.com/pdf/cvi-melles-griot/gradient-index-lenses/12567-66963.html. 

    [8]    Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, Optimized design for ultra-high Q silicon photonic crystal cavities, Optics Communications 283 (21) (2010) 4387 – 4391.

    Bibliographie

    [1]    Éric Akmansoy, Emmanuel Centeno, Kevin Vynck, David Cassagne, and Jean-Michel Lourtioz, Graded photonic crystals curve the flow of light : An experimental demonstration by the mirage effect, Appl. Phys. Lett. 92, 133501 (2008) 

    [2]    Predrag Milojkovic, Stefanie Tompkins, Ravindra Athale, Gradient Index Optics, Optical Engineering, November 2013/Vol. 52(11), p. 112101-1 

    [3]    F. Gaufillet, É. Akmansoy, Graded photonic crystals for graded index lens, Optics Communications, Volume 285, 2638 (2012). 

    [4]    F. Gaufillet, É. Akmansoy, Design of flat graded index lenses using dielectric Graded Photonic Crystals, Optical Materials, Vol. 47, 555-560 (2015) 

    [5]    F. Gaufillet and E. Akmansoy. Design and experimental evidence of a flat graded-index photonic crystal lens. Journal of Applied Physics, 114(8) :083105, 2013. 

    [6]    F. Gaufillet and E. Akmansoy. Graded photonic crystals for Luneburg lens, IEEE Photonics Journal, vol. 8, 11 (2016) 

    [7]    CVI Melles Griot. Gradient-Index Lenses – http://pdf.directindustry.com/pdf/cvi-melles-griot/gradient-index-lenses/12567-66963.html. 

    [8]    Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, Optimized design for ultra-high Q silicon photonic crystal cavities, Optics Communications 283 (21) (2010) 4387 – 4391.

    followed PhD

    fichier joint

    eric.akmansoy@u-psud.fr - 01 69 15 41 43

  • ['Photonique']

    (in french) Métamatériaux « tout diélectrique» : indice nul et indice négatif


      Eric Akmansoy.

    (in french)

     

    Proposition de stage de master 2

    Métamatériaux « tout diélectrique» : 

     

    indice nul et indice négatif 

     Éric Akmansoy 

    Département Photonique

    Les métamatériaux ont ouvert un nouveau champ en physique et en ingénierie. En effet, ces matériaux artificiels structurés possèdent des propriétés électromagnétiques surprenantes, telles que l’indice de réfraction négatif ou nul. L’indice de réfraction négatif permet la la focalisation sub-longueur d’onde par la lentille parfaite, c-à-d, une lentille plate s’affranchissant du critère de Rayleigh. Un autre phénomène que permettent les métamatériaux est la cape d’invisiblité. Les métamatériaux se développent maintenant vers la mise en oeuvre de composants [1]. Les métamatériaux « tout diélectrique» sont prometteurs car ils subissent de faibles pertes et leur géométrie est simple [2]. 

    Nous concevons, fabriquons et caractérisons des métamatériaux « tout diélectrique» opérant des micro-ondes au térahertz. Ils fonctionnent à partir des résonances de Mie de résonateurs diélectriques à grande permittivité. Nous avons mis en évidence un indice de réfraction négatif à 10 GHz [3, 4]. Récemment, nous avons aussi conçu une « métalentille» i.e., une lentille plate à gradient d’indice fonctionnant au térahertz [5]. 

    Durant ce stage, le couplage entre les modes de résonance sera étudié de façon à mettre en évidence un indice de réfraction négatif et un indice de réfraction quasi-nul. Les métamatériaux « tout diélectrique» seront simulés numériquement au moyen d’un logiciel afin d’extraire les paramètres électromagnétiques et l’indice de réfraction (cf. figure 1). Ce travail pourra être poursuivi par une thèse. 

     

    Fig. 1: Couplage entre les deux modes de résonance d’un métamatériau « tout diélectrique»le domaine téraHertz. Les trois zones du couplage sont mises en évidence  ; la courbe a la forme d’un diapason  : couplage faible  : pas d’indice négatif  ; couplage optimal (zone en grisé)  : l’indice est négatif  ; couplage fort  : l’indice n’est plus défini et les modes sont dégénérés. 

     

    Références

    [1]    N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,”  Nat Mater, vol. 11, pp. 917–924, 11 2012.

    [2]    S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat Nano, vol. 11, pp. 23–36, 01 2016.

    [3]    T. Lepetit, E. Akmansoy, and J.-P. Ganne, “Experimental evidence of resonant effective permittivity in a dielectric metamaterial,” Journal of Applied Physics, vol. 109, no. 2, p. 023115, 2011.

    [4]    T. Lepetit, É. Akmansoy, and J.-P. Ganne, “Experimental measurement of negative index in an all-dielectric metamaterial,” Applied Physics Letters, vol. 95, no. 12, p. 121101, 2009.

    [5]    F. Gaufillet, S. Marcellin, and E. Akmansoy, “Dielectric metamaterial-based gradient index lens in the terahertz frequency range,” IEEE J Sel Top Quant, vol. 10. 1109/JSTQE. 2016. 2633825, 2017.

     

    followed PhD

    fichier joint

    eric.akmansoy@u-psud.fr - 01 69 15 41 43

  • ['Photonique']

    All-Dielectric Metamaterials for Terahertz metadevices


      Eric Akmansoy.

    Centre de Nanosciences et nanotechnologies

     UMR 9001 du CNRS,

    université Paris-Sud, université Paris-Saclay

    91 405 Orsay – France

      

    PhD research proposal

    All-Dielectric Metamaterials for Terahertz metadevices

     Éric Akmansoy 

    Département Photonique

    __________________ 

     

    General framework

    Metamaterials have opened a new field in physics and engineering. Indeed, these artificial structured materials give rise to unnatural fascinating phenomena such as negative index, sub-wavelength focusing and cloaking. Metamaterials also exhibit near-zero refractive index [1]. These open a broad range of applications, from the microwave to the optical frequency domain. Metamaterials have now evolved towards the implementation of optical components[2]. 

    We consider All-Dielectric Metamaterials which are the promising alternative to metallic metamaterials, because they do not suffer from ohmic losses and consequently benefit of low energy dissipation and because they are of simple geometry. They consist of high permittivity dielectric resonators involving Mie resonances. We have experimentally demonstrated negative effective permeability and/or permittivity by the means of all-dielectric metamaterials [3]. Previously, we have also demonstrated a negative index all-dielectric metamaterial [4]. Recently, we have numerically demonstrated a metadevice, namely, a metalens that focuses an incident plane wave, is less than one and a half wavelength thick. Its focal length is only a few wavelength and the spot in the focal plane is diffraction - limited.[5]. We also study role of the coupling of the modes of Mie resonances in an all-dielectric metamaterial so as to achieve negative index at terahertz frequencies (see fig. 1)[6].

    Work Plan

    During this thesis, all dielectric metamaterials will be designed, fabricated and characterized for the terahertz range. Negative index will be studied in this frequency domain, which is a challenge. Various devices which will be investigated such as flat lens, gradient devices, etc. This work takes place within a group of scientists of different disciplines (chemists, material scientists, physicists). 

     

     

    Fig. 1: Spatial mode coupling : frequency of the first two modes of Mie resonances in function of the distance  between two resonators which is half the lattice period . The shaded area corresponds to negative value of the effective index . It evidences the mode degeneracy [6].

    Bibliography

    [1]    I. Liberal and N. Engheta, “Near-zero refractive index photonics,”  Nature Photonics, vol. 11, pp. 149 EP –, 03 2017.

    [2]    N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,”  Nat Mater, vol. 11, pp. 917–924, 11 2012.

    [3]    T. Lepetit, E. Akmansoy, and J.-P. Ganne, “Experimental evidence of resonant effective permittivity in a dielectric metamaterial,” Journal of Applied Physics, vol. 109, no. 2, p. 023115, 2011.

    [4]    T. Lepetit, É. Akmansoy, and J.-P. Ganne, “Experimental measurement of negative index in an all-dielectric metamaterial,” Applied Physics Letters, vol. 95, no. 12, p. 121101 (, 2009.

    [5]    F. Gaufillet, S. Marcellin, and E. Akmansoy, “Dielectric metamaterial-based gradient index lens in the terahertz frequency range,” IEEE J Sel Top Quant, vol. 10. 1109/JSTQE. 2016. 2633825, 2017.

    [6]    S. Marcellin and É. Akmansoy, “Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies,” in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials), pp. 4–6, Sept 2015.

    fichier joint

    eric.akmansoy@u-psud.fr - 33-1-6915 4143

  • ['Photonique']

    Graded Photonic Crystals Devices for Graded Index Optics


      Eric Akmansoy.

      

    Centre de Nanosciences et nanotechnologies

    UMR 9001 du CNRS,

    université Paris-Sud, université Paris-Saclay

    91 405 Orsay – France

      

    PhD research proposal

    Graded Photonic Crystals Devices for Graded Index Optics

     Éric Akmansoy 

    Département Photonique

    __________________ 

     

    General framework

    On the one hand, Graded Photonic Crystals (GPC) allow to efficiently control the flow of light thanks to the shape of their photonic bands, which we verified by demonstrating a “photonic mirage” at wavelength scale[1]. In the other hand, GRaded INdex (GRIN) optics is undergoing a renewal because it allows to downsize optical systems, opening a new way to optical design[2]. But GRIN optics was limited by a lack of easy to implement fabrication techniques. Nanotechnology enables to efficiently fabricate photonic crystals, which we will implement to fabricate GPC for GRIN optics. 

    We are designing, numerically simulating and characterising GPC devices (see fig.1)[3, 4]. More specifically, we have conceived a GRIN flat lens which we have characterised in the microwave[5]. Recently, we have designed and simulated a Luneburg lens[6] (see fig.1). We conceive thin and thick flat GRIN lenses[7]. For the sake, we engineer the equi-frequency curves which convey the dispersion properties of photonic crystals. Our aim is to go further up to the optical domain. The experimental evidence of such devices is an end in itself because it is a technological challenge to fabricate such GPC. Nevertheless, we will investigate the great variety of applications of GPC flat lens, which concerns Photonic Integrated Circuits, Lab on Chip, optical pumping of organic materials, OLED, biophotonics, fluorescence of cells, etc.

    PhD work plan

    GPC devices will be designed, fabricated and characterised at the Centre de Nanosciences et Nanotechnologies (C2N). This work will concern numerical simulation and optical design, nanotechnological processes and optical characterisation. These devices will operate at telecommunication wavelengths (1,55 μm). The Silicium On Insulator (SOI) channel of the C2N will be involved, because “state of the art" photonic crystal -based devices have already been fabricated in its clean-room [8]. These devices require the technological mastery of the position, of the size and of the shape of the patterns, which is adapted for the realisation of GPC devices. The size of the patterns of these latter is of several tens of nanometers, which will be challenging. The devices will be also characterised at the C2N. GPC devices operating in the near infrared (NIR) spectrum will also investigated (from 1 to 20μm) because, in this domain, lies a lot of molecular signatures, which is fruitful for NIR spectroscopy, chemical sensing, polluant detection, etc. 

          

     

    Fig. 1: Right : Focusing by a GPC GRIN flat lens[3] ; left : focusing by a Luneburg lens[6] 

    Bibliography

    [1]    Éric Akmansoy, Emmanuel Centeno, Kevin Vynck, David Cassagne, and Jean-Michel Lourtioz, Appl. Phys. Lett. 92, 133501 (2008) 

    [2]    Predrag Milojkovic, Stefanie Tompkins, Ravindra Athale, Gradient Index Optics, Optical Engineering, November 2013/Vol. 52(11), p. 112101-1 

    [3]    F. Gaufillet, É. Akmansoy, Graded photonic crystals for graded index lens, Optics Communications, Volume 285, 2638 (2012). 

    [4]    F. Gaufillet, É. Akmansoy, Design of flat graded index lenses using dielectric Graded Photonic Crystals, Optical Materials, Vol. 47, 555-560 (2015) 

    [5]    F. Gaufillet and E. Akmansoy. Design and experimental evidence of a flat graded-index photonic crystal lens. Journal of Applied Physics, 114(8) :083105, 2013. 

    [6]    F. Gaufillet and E. Akmansoy. Graded photonic crystals for Luneburg lens, IEEE Photonics Journal, vol. 8, 11 (2016) 

    [7]    CVI Melles Griot. Gradient-Index Lenses – http://pdf.directindustry.com/pdf/cvi-melles-griot/gradient-index-lenses/12567-66963.html. 

    [8]    Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, Optimized design for ultra-high Q silicon photonic crystal cavities, Optics Communications 283 (21) (2010) 4387 – 4391.

    fichier joint

    eric.akmansoy@u-psud.fr - 33-1-6915 4143

  • ['Photonique']

    Graded Photonic Crystals Devices for Graded Index Optics


      Eric Akmansoy.

      

    Centre de Nanosciences et nanotechnologies

     UMR 9001 du CNRS,

    université Paris-Sud, université Paris-Saclay

    91 405 Orsay – France

      

    PhD research proposal

    Graded Photonic Crystals Devices for Graded Index Optics

     Éric Akmansoy 

    Département Photonique

    __________________ 

     

    General framework

    On the one hand, Graded Photonic Crystals (GPC) allow to efficiently control the flow of light thanks to the shape of their photonic bands, which we verified by demonstrating a “photonic mirage” at wavelength scale[1]. In the other hand, GRaded INdex (GRIN) optics is undergoing a renewal because it allows to downsize optical systems, opening a new way to optical design[2]. But GRIN optics was limited by a lack of easy to implement fabrication techniques. Nanotechnology enables to efficiently fabricate photonic crystals, which we will implement to fabricate GPC for GRIN optics. 

    We are designing, numerically simulating and characterising GPC devices (see fig.1)[3, 4]. More specifically, we have conceived a GRIN flat lens which we have characterised in the microwave[5]. Recently, we have designed and simulated a Luneburg lens[6] (see fig.1). We conceive thin and thick flat GRIN lenses[7]. For the sake, we engineer the equi-frequency curves which convey the dispersion properties of photonic crystals. Our aim is to go further up to the optical domain. The experimental evidence of such devices is an end in itself because it is a technological challenge to fabricate such GPC. Nevertheless, we will investigate the great variety of applications of GPC flat lens, which concerns Photonic Integrated Circuits, Lab on Chip, optical pumping of organic materials, OLED, biophotonics, fluorescence of cells, etc.

    PhD work plan

    GPC devices will be designed, fabricated and characterised at the Centre de Nanosciences et Nanotechnologies (C2N). This work will concern numerical simulation and optical design, nanotechnological processes and optical characterisation. These devices will operate at telecommunication wavelengths (1,55 μm). The Silicium On Insulator (SOI) channel of the C2N will be involved, because “state of the art" photonic crystal -based devices have already been fabricated in its clean-room [8]. These devices require the technological mastery of the position, of the size and of the shape of the patterns, which is adapted for the realisation of GPC devices. The size of the patterns of these latter is of several tens of nanometers, which will be challenging. The devices will be also characterised at the C2N. GPC devices operating in the near infrared (NIR) spectrum will also investigated (from 1 to 20μm) because, in this domain, lies a lot of molecular signatures, which is fruitful for NIR spectroscopy, chemical sensing, polluant detection, etc. 

          

     

    Fig. 1: Right : Focusing by a GPC GRIN flat lens[3] ; left : focusing by a Luneburg lens[6] 

    Bibliography

    [1]    Éric Akmansoy, Emmanuel Centeno, Kevin Vynck, David Cassagne, and Jean-Michel Lourtioz, Appl. Phys. Lett. 92, 133501 (2008) 

    [2]    Predrag Milojkovic, Stefanie Tompkins, Ravindra Athale, Gradient Index Optics, Optical Engineering, November 2013/Vol. 52(11), p. 112101-1 

    [3]    F. Gaufillet, É. Akmansoy, Graded photonic crystals for graded index lens, Optics Communications, Volume 285, 2638 (2012). 

    [4]    F. Gaufillet, É. Akmansoy, Design of flat graded index lenses using dielectric Graded Photonic Crystals, Optical Materials, Vol. 47, 555-560 (2015) 

    [5]    F. Gaufillet and E. Akmansoy. Design and experimental evidence of a flat graded-index photonic crystal lens. Journal of Applied Physics, 114(8) :083105, 2013. 

    [6]    F. Gaufillet and E. Akmansoy. Graded photonic crystals for Luneburg lens, IEEE Photonics Journal, vol. 8, 11 (2016) 

    [7]    CVI Melles Griot. Gradient-Index Lenses – http://pdf.directindustry.com/pdf/cvi-melles-griot/gradient-index-lenses/12567-66963.html. 

    [8]    Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, Optimized design for ultra-high Q silicon photonic crystal cavities, Optics Communications 283 (21) (2010) 4387 – 4391.

    fichier joint

    eric.akmansoy@u-psud.fr - 33-1-6915 4143

  • ['Microsyst']

    (in french) Poste d'ingénieur CDD pour le développement d'une instrumentation spécifique pour la quantification et le dosage de petites séquences d’ADN en puce microfluidique


      Jean Gamby.

    (in french)

    Résumé:

    Le but du projet est l’optimisation d'une nouvelle méthode brevetée pour la capture et la

    détection de petites séquences d'ADN en puce microfluidique. Ce concept est très prometteur

    pour son application au diagnostic précoce du cancer. Le projet, cofinancé par le Labex

    Nanosaclay et le CNRS, vise à atteindre la miniaturisation du montage expérimental et le

    développement de nouvelles géométries de dispositifs microfluidiques pour la quantification et

    le dosage direct de brins d’ADN.

    Compétences souhaitées:

    i) Microfabrication de dispositifs microfluidiques en salles blanches

    ii) Modélisation par éléments finis (comsol) des électro-aimants (AC / DC)

    iii) Instrumentation électronique

    Profil: Ce projet fait appel à des compétences interdisciplinaires dans les domaines de la

    micro nanotechnologie, de l'excitation magnétique et de l'électrochimie. Le candidat doit avoir

    un intérêt marqué pour la micro nanotechnologie salles blanches (compétences attendues

    mais non obligatoires) et avoir une formation en génie électrique, et/ ou instrumentation.

    Lieux : C2N-CNRS, Equipe Biosys, Palaiseau, France.

    PHENIX-CNRS, Equipe Colloïdes Inorganiques, Paris, France.

    Informations supplémentaires: 1 an de CDD Ingénieur à partir de septembre 2018 avec

    une extension possible.

    Contact C2N: jean.gamby@c2n.upsaclay.fr

    Webpage : https://www.c2n.universite-paris-saclay.fr/fr/

    Contacts PHENIX: vincent.dupuis@sorbonne-universite.fr and jean-michel.siaugue@sorbonneuniversite.

    fr

    Webpage : http://www.phenix.cnrs.fr/

    fichier joint

    jean.gamby@c2n.upsaclay.fr - 01 69 63 60 60

  • ['Microsyst']

    Miniaturized artificial microfluidic lung


      Anne-Marie Haghiri-Gosnet and Gilgueng Hwang.

    Context: End-stage lung diseases may result in death either by oxygenation and carbon dioxide exchange insufficiency or by right heart failure. Despite recent dramatic improvements in the medical management of these diseases, lung transplantation remains ultimately the only therapeutic option. However, shortage of donor organs and long waiting times on list make this treatment only available for few patients. The aim of “BIOART LUNG 2020” RHU-ANR French project, coordinated by Professor Olaf Mercier of the Center of Thoracic Surgery of the Hospital Marie-Lannelongue is to develop a novel bio-artificial microfluidic lung as a durable method of replacing lung function in patients with end-stage refractory lung disease.

     

    The position: This postdoctoral position will focus first on blood flow measurements under pressure inside the vascular network and secondly on the study of the oxygenation function of a tri-layer microfluidic device. Based on a new bonding protocol allowing perfect integration of a thin membrane between the blood capillaries and the air chamber, the post-doc will study the role of the membrane structuration on the oxygenation capacity of the system.  He (She) will work in close collaboration with the team of Professor G. Uzan (Hospital P. Brousse) to develop a robust protocol for endothelial cells in the vascular network for minimizing shear stress. This project mixes micro/nanotechnology based on innovative flexible polymers, microfluidics under high flow conditions and cell culture under stress conditions with a perfect balance between experimental science and fluidic simulations. The post-doc will work inside the microfluidics team and directly with 3 researchers (G. Hwang, J. Gamby and A-M. Haghiri-Gosnet).

     

    The candidate:  We seek open-minded and curious candidates with strong expertise in different fields: microfabrication, microfluidics, engineering and biology with interest in multidisciplinary research. With a PhD in the field of microfluidics and an engineering vision, he should also express a clear taste towards experimental work coupled with COMSOL simulation. Finally, an additional expertise in cell culture within fluidic devices will be a strong asset.

     

    The net salary:  2080€/month for a young post-doc (just PhD graduated) or 2915€/month for a CDD researcher with an experience of 2 years in research.

     

    The group: The BIOSYS microfluidics team at C2N (https://www.c2n.universite-paris-saclay.fr/fr/recherche/mnbf/biosys/) has expertise in micro and nanofluidics [Lab Chip 11 (2011) 785-804], high performance separation techniques [Langmuir, 31(37) (2015) 10318-10325], biosensing [Biomicrofluidics 10 (2016) 014115], nanofabrication (nanoimprint and 3D Lithography [Nanoscale 8 (2016) 15479]), and microswimmers [5].

    The lab: The Center of Nanosciences and Nanotechnology is one of the 6 nanofabrication labs in France with a state-of-the-art clean room in a very nice working environment in the Paris area.

     

    Contact: You should send CV and 3 recommendations

    to Anne-Marie Haghiri-Gosnet and Gilgueng Hwang

    at anne-marie.haghiri@c2n.upsaclay.fr and gilgueng.hwang@c2n.upsacaly.fr

    fichier joint

    anne-marie.haghiri@c2n.upsaclay.fr - +(33) 1 69 63 61 22

  • ['Photonique']

    Nano-optomechanics for time-frequency metrology and microwave photonics


      Rémy Braive.

    The photonic clock architecture will rely on an integrated high-quality optomechanical resonator, namely a photonic crystal defect cavity, in order to achieve very stable oscillation in the GHz range, where the lack of good quality and miniaturized sources is a severe issue. Thanks to the strong reduction of the oscillator dimensions down to nanoscale, the resonator will sustain mechanical modes strongly coupled to light up to 3-5 GHz, directly at the operating frequency of interest for optoelectronic microwave oscillators and metrology applications.

    fichier joint

    remy.braive@c2n.upsaclay.fr - 01 69 63 60 49

  • ['Photonique']

    Non-linear dynamics of nano-optomechanical resonators


      Rémy Braive.

    Nonlinear dynamics in optomechanical resonator can cause both the optical and the mechanical modes to evolve from periodic to chaotic oscillations. Despite recent progress and growing interest on nonlinear dynamical effects occurring in Nano-OptoElectroMechanical systems (NOEMs), optomechanical chaos and stochastic resonance remain largely unexplored experimentally in such research field. Further experimental and theoretical studies will not only substantially deepen our understanding of noise-induced processes in non-linear NOEMs but also cast the bases for their use in noise-aided high-precision measurements and noise-assisted detection of weak signals.

    fichier joint

    remy.braive@c2n.upsaclay.fr - 01 69 63 60 49