C2N logo
C2N logo

Centre for Nanoscience
and Nanotechnology

UPsud logo CNRS logo

News

  • 4

    12/2017

    (in french) Projet FORWARD porté par Aloyse Degiron récompensé par une bourse ERC CONSOLIDATOR 2017


      Aloyse Degiron.

    (in french)

    Projet FORWARD: des milieux artificiels pour générer des faisceaux de lumière complexe

    Les faisceaux de lumière complexe (lumière vortex, lumière superradiante) jouent un rôle de plus en plus important en biologie et en photonique mais requièrent des montages volumineux et sophistiqués qui limitent considérablement leur potentiel. Le projet FORWARD vise à obtenir les mêmes fonctionnalités avec une nouvelle génération de composants optoélectroniques miniaturisés dans le proche infrarouge. Cet objectif implique de totalement repenser la façon de créer et de manipuler des formes très exotiques de lumière. Ce défi sera abordé en hybridant deux familles de milieux artificiels - les nanocristaux colloïdaux et les métamatériaux - et en tirant parti de comportements coopératifs classiques et quantiques au sein des hybrides. Cette initiative peut être considérée comme l’une des premières à adopter une approche unifiée et multidisciplinaire des milieux artificiels, ouvrant de nouveaux horizons pour les matériaux composites synthétiques en optique, en électronique et en optoélectronique.

    Après une thèse sur la transmission optique extraordinaire effectuée à l’Institut de Science et d’Ingénierie Supramoléculaires à Strasbourg, Aloyse Degiron rejoint l’université de Duke aux Etats-Unis en 2005 pour effectuer un séjour postdoctoral sur la plasmonique infrarouge et les métamatériaux micro-ondes. En 2008, il devient enseignant-chercheur contractuel au sein de cette même université. Recruté au CNRS à l’automne 2009, il est affecté au Centre de Nanosciences et de Nanotechnologies à Orsay où il développe une recherche centrée sur les phénomènes lumineux et optoélectroniques dans l’infiniment petit.


  • 27

    11/2017

    Phase Stochastic Resonance in a Forced Nanoelectromechanical Membrane


      Rémy Braive.

     

    Authors and Affiliation

    Avishek CHOWDHURY (C2N – Marcoussis)

    Sylvain BARBAY (C2N – Marcoussis)

    Marcel CLERC (Universidad de Chile - Santiago)

    Isabelle ROBERT-PHILIP (C2N – Marcoussis)

    Rémy BRAIVE (C2N – Marcoussis, Université Paris-Diderot)

     

    Abstract

    Stochastic resonance is a general phenomenon that can seem paradoxical at first, whereby noise present or injected in a system can enhance the detection of a small signal. It is usually observed in one-dimensional bistable systems subjected to a small amplitude modulated signal. In our work recently published in Phy. Rev. Lett., we show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nano-electromechanical membrane. It results in the enhancement of a weak phase modulated signal thanks to the addition of phase noise. A theoretical model, confirmed by the experimental measurements, reveals the unusual role of phase noise that acts multiplicatively. These results may open interesting prospects for phase noise metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to various systems and open novel opportunities for stochastic resonance applications.

    "accepted for publication at Physical Review Letters journal, on-line available soon "

     


  • 8

    11/2017

    Plasmon fingerprint in Au Nanocrystal assemblies


      Claire Deeb.

    Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size. This plasmon fingerprint could be used as a probe for investigating the optical properties of such assemblies. Our water-soluble assemblies enable exploring a variety of potential applications including solar energy and biomedicine.

     

    Published in:

    Water-Dispersed Hydrophobic Au Nanocrystal Assemblies with a Plasmon Fingerprint

    Nailiang Yang, Claire Deeb, Jean-Luc Pelouard, Nordin Felidj, and Marie-Paule Pileni

    ACS Nano, 2017, 11 (8), pp 7797–7806

     

     

     

     


  • 27

    10/2017

    Jacqueline Bloch laureate of the CNRS Silver Medal


      Jacqueline Bloch.

    Internationally recognized as an expert in quantum and non-linear optics, Jacqueline Bloch is exploring the ultimate light matter coupling in semiconductor nanostructures. Hired in 1994 as a permanent CNRS researcher (CR) at the Microstructure and Microelectronic Laboratory (L2M), she initiated experimental research on semiconductor microcavities. She is particularly interested in the strong coupling regime between light and matter, a regime which gives rise to the formation of hybrid quasi-particles named cavity polaritons. In 2008, her pioneering results on polariton condensation in microstructures, opened the way to the investigation of these quantum fluids of light in microstructures sculpted at the micron scale thanks to the technological facilities available in the clean room of her laboratory. Since then, her career has been laden with a series of original and spectacular achievements: with her research group she has studied various non-linear physical phenomena, such as superfluidity, frustrated systems, topology or quantum phase transition in open systems. Promoted as Research Director in 2011, she is now contributing to the organization of the new Center for Nanoscience and Nanotechnologies (C2N) where she is the co-director of the Photonics Department. Hired in 2015 as Professor “Chargée de cours” at Ecole Polytechnique Physics Department, she is awarded the same year the prestigious Jean Ricard Prize of the French Physical Society.

    La Médaille d'argent du CNRS distingue un chercheur pour l'originalité, la qualité et l'importance de ses travaux, reconnus sur le plan national et international. Lien vers le site du CNRS


  • 27

    10/2017

    Light on graphene: Marijana Milicevic, doctoral student of C2N laureate of a L'Oréal grant


      Marijana Milicevic.

    Graphene (2004 discovery awarded with the Nobel Prize for Physics in 2009) is the best conductor of electricity known to date. This new class of extremely thin materials consisting of a single layer of carbon atoms, has outstanding electronic, optical and mechanical properties that will potentially revolutionize the world of microelectronics. However, these innovative materials that captivate physicists remain difficult to manipulate in the laboratory because their study requires an experimental resolution on the scale of the infinitely small, the atom. Originally from Belgrade, Serbia, and currently PhD student at the Center for Nanosciences and Nanotechnology at the Marcoussis site, Marijana Milicevic has chosen to recreate this material in a new way, using light, in a photonic simulator. The objective of this tool is to use photons, constitutive particles of light, to recreate graphene in the laboratory in order to study it with better control. "The photons of the simulator are confined to micrometrically sized structures to equal or surpass the particular electronic properties of the material. Remarkably, Marijana studies particular structures of graphene, called "edge states", intrinsically very stable, to ensure transport without energy dissipation.

     


  • 25

    10/2017

    (in french) Damien Querlioz, lauréat de la médaille de bronze du CNRS


      Damien Querlioz.

    The CNRS Bronze Medal 2017 was awarded to 40 researchers, 26 women and 14 men. It rewards the first work of a researcher, who makes him a talented specialist in his field. Damien Querlioz, CNRS Research Scientist at C2N, is one of the lucky winners for his work on memories and bioinspired systems. Damien Querlioz is in charge of the C2N INTEGNANO group and is also an expert at the Observatory of Micro and Nanotechnologies, a member of the interdisciplinary GDR BIOCOMP board and a member of the management committee of the European COST MEMOCIS program. In 2016, Damien Querlioz won a European Research Council Grant (ERC) on smart memories capable of inference using the physics of nanodevices (project ERC NANOINFER).

    CNRS website

    INSIS laureate Starting Grants

    Description of the European project


  • 24

    10/2017

    Mapping in real space antiferromagnetic order at nanoscale


      Jon-von Kim.

    Using an artificial atom in diamond as an ultrasensitive magnetic field detector, physicists have for the first time imaged the leakage field radiated by a compound of the vast family of antiferromagnets. This observation allowed them to study the effect of an electric field on the sinusoidal modulation of the antiferromagnetic order in a multiferroic material.

    INP website

    NSIS website

    Image caption: (left) An artificial atom (center NV represented by the green arrow) inserted into a diamond tip is used to map the magnetic field radiated by an antiferromagnetic material. Under radiofrequency excitation, the amplitude of the magnetic field is coded on the fluorescence intensity of the NV center illuminated by a green laser. (right) Quantitative mapping of the magnetic field produced by the sinusoidal modulation of the antiferromagnetic order in a 30 nm thick BiFeO3 film.


  • 23

    10/2017

    (in french) Filtrer la lumière photon par photon


      Pascale Senellart.

    Using an artificial atom capable of blocking or letting the photons of a laser pass by, CNRS researchers, in collaboration with the University of Queensland, have taken an important step towards the development of deterministic quantum optical logic gates ....

    INP website

    INSIS website


  • 23

    10/2017

    Will the computer of tomorrow be bio-inspired? Damien Querlioz enriches the debate!


      Damien Querlioz.

    As part of the cycle of conferences and debates "Dialogues - Keys to understand", taking place every 4th Thursday of the month, CNRS, CNAM and RFI propose a new conference on the computers of tomorrow, at the Museum of Arts and Crafts in Paris, on October 26, 2017 at 18:30. Damien Querlioz, C2N researcher and CNRS 2017 bronze medalist, took part in this fascinating debate with Laurent Largent, Director of the Femto-ST Institute (CNRS / University of Franche-Comté). The former, whose main research work is aimed at developing neuromorphic-type computing machines that completely question our conception of the computer as we currently perceive it, presented, during this debate, the evolutions and current and future scientific advances in this area.

    INSIS website

    CNAM website


  • 23

    10/2017

    Heat Coulomb Blockade of one Ballistic Channel


      Anne Anthore et Frédéric Pierre.

    Quantum physics rules charge and heat transport in low dimensional conductors. Exploring the new quantum laws of heat transport is a particularly challenging field of research. Indeed, there is no thermal equivalent of the ammeter and applying small but well-known temperature differences within nanoscale circuits is technically difficult.

    Physicists from C2N (CNRS-Paris Diderot University-Paris Sud University) overcomes this challenge by probing locally the temperature with ultra-sensitive noise measurements within a highly tunable hybrid metal-semiconductor nanocircuit. They have demonstrated that the classical law of heat resistance composition does not hold anymore. In particular, the heat evacuation from a small circuit node connected by perfect (ballistic) elementary quantum conductors is found systematically reduced by one thermal conductance quantum. This phenomenon results from electronic interactions. This work is published online in Nat. Phys. (https://www.nature.com/nphys/research/).


  • 23

    10/2017

    A topological laser realized at the C2N


      Jacqueline Bloch et Philippe Saint-Jean.

    The work of researchers from the Center for Nanosciences and Nanotechnologies (CNRS - Université Paris-Sud) in Marcoussis, France, in collaboration with a researcher from the Università di Trento in Italy, has led to a major breakthrough in topological physics: the realization of the first topological laser. Such a laser implements a resonating mode that is intrinsically protected, thanks to the topological properties of its architecture, against external perturbations and fabrication defects.

     The discovery of topological phase transitions in condensed matter, which was awarded the 2016 Noble prize in physics, has profoundly influenced the field of solid-state physics. The hallmark of these phase transitions is the emergence of localized states whose properties are unaffected by the presence of defects, dislocations and other kinds of disorder. For example, topological insulators, which are one of the most notable manifestations of these exotic phases, present an electrical conductivity along their edge that is perfectly insensible to the presence of irregularities. Recently the extension of this topological physics to the realm of photonics has triggered considerable efforts to engineer novel generations of optical devices (e.g. waveguides, optical isolators, diodes, and, of course, lasers) whose performances are unaffected by perturbations of their environment.

    In the case at hand, the researchers of the C2N have built a topologically robust laser by taking profit of the physics of cavity polaritons, a half-light /half-matter quasi-particle confined in cylindrically-shaped optical cavities (see the figure on the right). By coupling these micro-cylinders together, they formed a uni-dimensional lattice that presents well-defined topological properties leading to the emergence of localized photonic modes at the edges of this lattice. Then, by using the gain associated to the matter part of polaritons, they triggered a laser emission from one of these modes, thus realizing the first topological laser.

    Legend image: Electron microscopy image of a lattice of micro-cylinders including an artificial representation of the lasing emission. A schematic image of one of these cylinders is shown on the right where a quantum well (QW) is inserted between two distributed Bragg mirrors (DBR).

    Article link


  • 25

    09/2017

    Yellow nano-bricks road for the light


      Anatole LUPU.

    For a long time optics evolution was based on the exploitation of the properties of so-called "natural" optical media, which are homogeneous and continuous on the wavelength scale. The advent of metamaterials dawned the era of new artificial media with exotic properties not encountered in the nature, leading to the demonstration of the invisibility cloak or the perfect lens based metamaterials with a negative index. However most of these demonstrations are confined to the field of microwaves.

    The two main obstacles preventing the use of metal metamaterials in the field of optics are: i) the technological difficulty of manufacturing multilayer structures; ii) the optical losses due to absorption of the metal. To circumvent these issues we consider a composite guiding structure made of a 2D plasmonic metasurface located on the top of high index silicon on insulator waveguide. The objective is to achieve an efficient control over the flow of the light in the waveguide using effective index variation induced by the metasurface resonance.

    By following this approach our team performed the demonstration of the first plasmonic metasurface based graded index lens integrated on a Silicon waveguide for operation in the near infrared domain. This enabling technology is quite generic and can be adapted to different type of planar lightwave circuits platforms: Silicon, GaN/AlN, InGaAsP/InP, doped silica glass etc.

    Figure 1 : Photography of the metasurface made of gold nanowires on silicon.

    Figure 2: Full 3D simulation of the light intensity inside the silicon at 190THz.Y. Fan, X. Le Roux, A. Korovin, A. Lupu, A. de Lustrac, “Integrated 2D graded index plasmonic lens on a Silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).Lien vers l'article


  • 21

    09/2017

    C2N co-organizes the 9th Russian-French Workshop on Nanosciences and Nanotechnologies (RFWNN 2017), Suzdal (Russian Federation), 3-7 October 2017


      C2N.

    Since 2004, CNRS organizes, together with Russian research organizations and world-famous physics and chemistry institutes, scientific workshops covering the fields of nanosciences and nanotechnologies. The aim is to strengthen existing French-Russian collaborations, to foster new collaborations and, more generally, to propose a sample of the recent progress in France in these domains. These workshops, which take place alternatively in France and in Russia, have allowed the two partner countries to develop solid and long-lasting bilateral collaborations, a good example being the International Associated Laboratory ILNACS devoted to nanostructures of compound semiconductors, the scientific coordination of which is the task of C2N (see http://www.lpn.cnrs.fr/fr/ELPHYSE/ILNACS/).

    After the Novosibirsk (2013) and Montpellier (2015) workshops, the 9th event in this series will take place in Suzdal, near Moscow. C2N is strongly involved in this event, through the coordination of the French participation, the co-chairing of the meeting and three invited talks.

    Site de la conférence


  • 21

    09/2017

    Press release: The first artificial nano-neuron capable of voice recognition is born


      Damien Querlioz.

    Researchers from the CNRS / Thales Joint Physics Unit, the Center for Nanosciences and Nanotechnologies (CNRS / Université Paris Sud), in collaboration with American and Japanese researchers, have just developed the first artificial nano-neuron capable of recognizing figures pronounced by different speakers. Like the recent development of electronic synapses, this electronic nano-neuron, described in a Nature article, is a key breakthrough for artificial intelligence and its applications.

    CNRS press release


  • 15

    09/2017

    C2N participates in the 2017 edition of the Fête de la Science


      Communication.

    Again this year, the C2N opened its doors to schools and the public on the occasion of the Science Festival. On Sundays various workshops were offered that were supervised by scientists:

    "The nano insect": Observation of insects at the nanoscale by electron microscopy. (workshops every 45 minutes)

    "Initiation to the Nano-world": A first step towards the amazing properties of the infinitely small. Workshops and demonstrations were held about the colors of the nano-world, microscopy and the magic of nanoparticles. These open access workshops for young and old introduced the little-known world of nanoscience and nanotechnology and how it can be exploited on a daily basis.

    Nanotechnology tools Nanotechnologies? What do these terms mean to you? : This animation aimed at demystifing these concepts and demonstrating their usefulness by a guided tour of the Micro-Nano Technologies Platform.

    "Fun Physics" Experiments for young and old about magnetism, electricity, vacuum, nanoscience and many more, led by scientists. The workshops offered free access all day long.


  • 27

    07/2017

    Neuromorphic computing with nanoscale spintronic oscillators


      Damien Querlioz.

    Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima,Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles ,Julie Grollier

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 108 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals2, 3, 4, 5 and several candidates, including memristive6 and superconducting7 oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction)8, 9 can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

    article link


  • 24

    07/2017

    (in french) Proposition de thèse: Mise au point de procédés de structuration de l’acier par gravure sèche associée à des traitements thermochimiques


      Stephane GUILET.

    (in french)

    Cette annonce de proposition de thèse a expiré.

     

    Sujet de thèse

    Cette thèse est une co-tutelle IJL/C2N. Nous proposons au candidat de développer des procédés de gravure réactive par plasma halogéné de la surface d’aciers inoxydables austénitiques et martensitiques à l’échelle micrométrique et/ou nanométrique. Il réalisera ce travail au C2N (Centre de Nanosciences et de Nanotechnologies ; Université Paris-Saclay) où il disposera d’un équipement de gravure ICP/RIE et de moyens de caractérisation de la phase plasma et des motifs réalisés (sondes ioniques, spectroscopie optique d’émission, spectrométrie de masse, MEB, AFM, profilométrie…). Il travaillera en étroite collaboration avec un post-doctorant, recruté à l’IMN (Institut des Matériaux Jean Rouxel ; Université de Nantes), dont les activités porteront principalement sur le développement d’un modèle de gravure permettant d’appréhender de façon exhaustive les mécanismes d’interaction plasma-surface qui se produisent au cours du procédé. Les verrous technologiques et scientifiques résident dans la complexité du matériau à graver (poly-atomique, poly-cristallin, joints de grain, effets magnétiques), et l’obtention d’un masquage très sélectif adapté à la géométrie des pièces.

    A l’IJL (Institut Jean Lamour ; Université de Lorraine), le doctorant appliquera des traitements thermochimiques (nitruration, carburation) par plasma et à basse température sur les substrats d’acier structurés. La problématique est de permettre, à minima, de conserver les propriétés des motifs créés par gravure et donc les fonctionnalités visées, tout en renforçant globalement la structure afin d’améliorer la durée de vie des pièces. La résistance à la corrosion des matériaux traités est également un enjeu important. Après traitement, le doctorant devra donc s’impliquer dans la caractérisation des échantillons :

    • Topographie de surface et dimensions des motifs renforcés: profilométrie tactile, microscopie confocale, microscopie interférométrique en lumière blanche, AFM, MEB, MET
    • Aspect chimique et structural : métallographie, micro et nano-dureté, DRX, microsonde de Castaing, SIMS, SDL
    • Résistance à la corrosion : mesures électrochimiques stationnaires, spectroscopie d’impédance électrochimique
    • Mouillabilité : mesure d’angle de contact sur banc Digidrop
    • Etudes tribologiques : frottement de type pin-on-disc

  • 24

    07/2017

    H2020 Marie Curie Actions- Innovative Training Network INDEED Innovative Nanowire DEvicE Design- Doctoral Research Fellowship (PhD) Flexible nanowire light emitting diodes


      Maria Tchernycheva.

    PhD Research project

    Flexible optoelectronic devices provide an amount of new functionalities and have the potential to open up a new branch of industry. In particular, flexible light emitting diodes (LEDs), are today a topic of intense research driven by applications such as bendable displays, conformable light sources, bio-medical devices, etc. Today the flexible technology is dominated by organic semiconductors, which however exhibit low efficiency and a limited lifetime especially for the blue spectral range. For example, organic LEDs have a much lower luminance and a shorter lifetime in comparison to the LEDs based on inorganic nitride semiconductors. However, the inorganic semiconductor devices are mechanically rigid; the fabrication of flexible devices from conventional thin film structures is quite challenging and requires micro- structuring of the active layer. To avoid the micro-structuring step, it is advantageous to shrink the active element dimensions and to use bottom-up nanostructures, such as nanowires, instead of two-dimensional films. Nanowires show remarkable mechanical and optoelectronic properties stemming from their anisotropic geometry, high surface-to-volume ratio, and crystalline perfection. They are mechanically flexible and can stand high deformations without plastic relaxation. Polymer-embedded nanowires offer an elegant solution to create flexible optoelectronic devices, which combine the high efficiency and the long lifetime of

    norganic semiconductor materials with the high flexibility of polymers. The objective of this PhD project is to develop a reliable technology for red, green and bleu nanowire flexible micro-LEDs and to demonstrate a prototype of a display. Nanowire arrays embedded in a flexible film and lifted-off from their native substrate will be used as the active material. The lift-off and transfer procedure enables the assembly of free-standing layers of nanowire materials with different bandgaps without any constraint related to lattice- matching or growth conditions compatibility [1]. This concept therefore allows for a large design freedom and modularity since it enables combination of materials with very different physical and chemical properties, which cannot be achieved by monolithic growth. For RGB LEDs nanowires of different semiconductor materials (GaAsP and InGaN) will be employed.

    The PhD candidate will focus on the technological development of the displays using clean-room facilities of the C2N and on the device testing using optical spectroscopy and microscopy set-ups (photoluminescence, electroluminescence, EQE, electron beam induced current microscopy, etc).


  • 24

    07/2017

    C2N microrobot: double world champion in microrobotics competition


      Gilgueng HWANG - Laurent COURAUD.

    French team showed the strength by winning two champion titles in international mobile microrobotics challenge held at Singapore in 2017. It was held during the international conference on robotics and automation having more than 3200 participants.

    The C2N team named NOMAD participated in this year edition from 27 May to 2 June 2017. They participated in two competitions (« mobility/precision « and « best-in-show «) and the champion titles of both events went all to the C2N team. Although the team had already won in the previous editions of 2011, 2012, 2013 and 2014, it is the first time for the team won the double champions. Not participating in the edition of 2016, the team prepared and brought their new mobile microrobots having much smaller, more precise and more functional features to Singapore to compete with the other three teams came up to the final round. The team was led by Gilgueng Hwang (CNRS researcher) who has been working on the research activities of mobile microrobots in microfluidics at C2N, Marcoussis. Laurent Couraud (CNRS engineer) has been working on the development of virtual reality microrobotic simulator with force feedback joystick device which was presented in the « best-in-show » competition. This system could potentially help users the operation of microrobots. Alisier Paris (1st year PhD student) has been working on the modeling/design and control of the developed microrobots which was essential to win the « mobility/precision « competition by factor 4 higher scores than the second team. The smaller and more precise microrobots of the C2N team showed their excellent performances and advanced micro/nanotechnologies through this event. Particular thanks should be given to Dominique Decanini (CNRS research engineer) for two-photon 3D nanolithography which is essential to fabricate microrobots in the cleanroom of C2N, Marcoussis.

    Recent rapid writing module upgrade helped to accelerate the process. The team will go forward the new technical and scientific challenges. The next year edition will held in Brisbane, Austrailia.

    For more information, contact to gilgueng.hwang@c2n.upsaclay.fr

    http://www.lpn.cnrs.fr/fr/NANOFLU/Nomad.php

     


  • 26

    06/2017

    15th Nano and Micro Systems workshop Nano/Micro systems for health and safety


      GDRI NAMIS.

    NAMIS is an international research network on Nano and Micro Systems initiated by the french National Center of Scientific Research (CNRS) and the Institute of Industrial Sciences (IIS) of the University of Tokyo. NAMIS was officially founded November the 2th, 2005 by 6 European and Asian organizations: CNRS (France), IIS/University of Tokyo (Japan), EPFL (Switzerland), IMTEK (Germany), SNU (Korea) and VTT (Finland). In the 2006-2010 period, new organizations from Canada (Polytechnique Montréal), South Korea (KIMM), France (ESIEE/université Paris- Est), Japan (Tohoku University), Taiwan (NTHU) and USA (University of Washington) successively joined NAMIS. In 2016 Tohoku university left NAMIS network while MESA+ Institute of Technology (The Netherlands) was welcome as a new partner. The network now gathers 12 organizations from 10 countries representing more than 90 high rank laboratories or Institutes.

    15th Nano and Micro Systems workshop

    Nano/Micro systems for health and safety

    June 26th-28th, 2017 Interciti Hotel,Daejeon, South Korea


  • 16

    06/2017

    The C2N, 1 year already !!!


      C2N.

    Come celebrate the 1 year of C2N, Friday, June 16, Marcoussis site

  • 14

    06/2017

    (in french) IONS Paris 2017 International OSA Network of Students


      C2N.

    The Student Chapter of Optics – Paris (SCOP) will host the International OSA Network of Students (IONS) conference in its 2017 version (http://ionsparis.osahost.org/). The main goal of this event is to strengthen a worldwide network of young researchers working in optics and nanosciences. A hundred participants are expected in Paris-Saclay University (École Polytechnique and Paris-Sud-C2N) between the 14th and the 17th of June.The conference technical program contains keynote speakers as well as oral and poster presentations. The exhibition, beverage breaks, the event reception, the outreach activities and the social day will encourage and support meeting with peers and colleagues from more than 15 different countries.

    Conference web site: http://ionsparis.osahost.org/


  • 24

    04/2017

    Birth of electro-optical nanodiodes- Fabrice Raineri


      Fabrice Raineri.

    Researchers from C2N, in collaboration with STMicroelectronics and Paris-Diderot University, have designed and manufactured silicon-based integrated laser nanodiodes that are able to transfer optical electrical information very efficiently within a chip. These resultsd have been published in Nature Photonics.

    INSIS website

    Université Paris Diderot website


  • 24

    04/2017

    HYPNOTIC project carried by F. Raineri awarded with a 2016 ERC CONSOLIDATOR grant


      Fabrice Raineri.

    Fabrice Raineri is a researcher in the NanoPhotonIQ team of the Center for Nanosciences and Nanotechnologies, specialising in Nano-lasers for the optimization of telecommunications, nonlinear optics and nanotechnologies.  He is one of the 2016 ERC Consolidator award winners for the HYPNOTIC project, which focuses on the development of nano-lasers, extremely compact and efficient light sources needed for the future of information and communication technologies.

    INSIS website

    Université Paris Diderot website

    Légende photo : Photographie en microscopie électronique à balayage d’un nanolaser hybride en semiconducteur III-V sur Silicium


  • 10

    03/2017

    ERC : Damien Querlioz and Daniel Lanzillotti Kimura - INSIS laureate 2016 - Starting Grants


      Damien Querlioz.

    ERC Starting Grants from the European Research Council (ERC) support young researchers who obtained their PhDs two to seven years ago. 325 projects were selected in 2016 from all disciplines and include 46 French laureates, six of whom are researchers in INSIS laboratories.

    INSIS laureate  ERC Starting Grant

    Damien Querlioz laureate ERC Starting Grant bourse


  • 9

    03/2017

    Record de froid pour les électrons d’un circuit électrique de taille micrométrique


      Frédérique Pierre.

    Des physiciens ont refroidi des électrons au sein de circuits électriques micrométriques à une température de 6 millikelvins. Cette performance a été rendue possible par l’utilisation d’un dispositif de mesure de température in situ combinant trois techniques différentes. Lien vers l'article du CNRS

    Par où passe la chaleur dans les circuits quantiques ?

    La physique quantique régit le transport d’électricité et de chaleur à travers les conducteurs de très petites dimensions. L’étude de tels conducteurs permet d’établir la mécanique quantique à l’échelle mésoscopique, intermédiaire entre l’atome et le monde macroscopique, et également d’élucider les nouvelles lois du transport qui émergent dans les nanocircuits.

    En conséquence du double caractère à la fois ondulatoire et corpusculaire des particules, un conducteur quantique s’apparente à un guide d’onde électronique constitué de plusieurs modes élémentaires appelés canaux de conduction. Comme en transport classique, chaque canal est caractérisé par ses conductances électrique Ge et thermique Gth. La mécanique quantique se manifeste tout d’abord par les valeurs de Ge et Gth qui s’expriment simplement en fonction de la charge de l’électron et des constantes de Boltzmann et de Planck. Alors que la loi classique de composition des conductances électriques est vérifiée pour N canaux parfaitement transmis en parallèle, il est prédit qu’elle est violée pour les conductances thermiques. En effet, un unique canal parmi N est bloqué spécifiquement pour le transport de chaleur. C’est le résultat des corrélations quantiques entre canaux de conduction, induites par l’interaction coulombienne.

    La démonstration expérimentale de cette prédiction, appelée blocage de Coulomb de la chaleur, fait l’objet d’un article publié à Nature Physics par des chercheurs du CNRS et de l’université Paris-Diderot, travaillant au Centre de Nanosciences et de Nanotechnologies (CNRS-UPsud).

    Pour parvenir à ce résultat les chercheurs de l’équipe Transport Quantique ont injecté quelques femto Watts (10-15 W) de puissance dans une électrode métallique micrométrique. A des températures de quelques centièmes de degrés au-dessus du zéro absolu (-273.14°C), la puissance injectée chauffe légèrement l’électrode et est principalement évacuée par deux très petits conducteurs quantiques présentant des canaux parallèles de conduction électroniques contrôlables in-situ. La température de l’électrode est mesurée très précisément à partir des fluctuations de courant électriques associées. La conductance thermique est alors déduite du ratio entre la puissance injectée et la différence de température. Pour observer le blocage de Coulomb de la chaleur, il a fallu refroidir à l’extrême le circuit afin que seuls les canaux de conduction électronique évacuent la chaleur. 

     

    Figure 1: Image en fausse couleur au microscope électronique de l’échantillon utilisé lors de la mesure du blocage de Coulomb de la chaleur. Les conducteurs quantiques sont réalisés dans la zone colorée en bleu et contrôlés par les pistes colorées en jaune. L’électrode métallique chauffée est coloriée en marron, des canaux de conduction sont symbolisés par les lignes rouges.


  • 10

    01/2017

    (in french) Des composants bio-inspirés


      Damien Querlioz.

    (in french)

    « Nous aussi, on a galéré », se souvient Damien Querlioz, chercheur CNRS au Centre de nanosciences et de ­nanotechnologies de Paris-Saclay. Il évoque les temps où ses recherches sur des composants neuromorphiques n’étaient guère à la mode, comme l’étaient celles sur le deep learning neuro-inspiré. « Dans mes projets de financement, j’évitais même le mot neurone ! Maintenant, tout le monde le fait. » C’est qu’une prise de conscience a eu lieu. « Le programme AlphaGo consomme dix fois plus d’énergie qu’un joueur de go ­humain », rappelle Julie Grollier, chercheuse CNRS dans le laboratoire commun entre l’organisme et Thales, sur le plateau de Saclay. Augmenter la taille des réseaux de neurones artificiels risque d’atteindre des limites dont les ­industriels sont conscients. En outre, il est impossible de disposer des bienfaits de cette intelligence artificielle dans les mobiles, trop peu puissants ; il faut ­recourir aux réseaux de communication et à des connexions à de grandes fermes de serveurs. D’où ce nouveau retour vers le ­vivant et la formidable efficacité du cerveau, qui consomme très peu d’énergie, même pour des ­tâches complexes. L’un de ses ­secrets, encore inimité, est de ne pas séparer la mémoire et le calcul, évitant ainsi des échanges d’informations incessants et consommateurs en énergie. Tout est codé dans les neurones et les synapses, sans pouvoir identifier des zones de mémoire ou de calcul. « Il faut tout repenser ! », constate Julie Grollier. Et le mouvement a commencé. IBM produit une puce, TrueNorth, un réseau de neurones composé de transistors classiques mais agencés de façon à consommer beaucoup moins que des équivalents sur cartes graphiques. Mais cette puce n’apprend pas : on programme le câblage de ses neurones (synapses) en fonction de calculs préliminaires effectués sur de gros serveurs. NEUROMORPHISME D’autres fabricants utilisent des composants « programmables », dits FPGA, pour essayer de faire un peu mieux qu’avec les cartes graphiques. Mais ce n’est pas encore du « vrai » neuromorphisme. Pour cela, il faut des composants dont les propriétés physiques peuvent varier, à la manière dont le poids d’une synapse change. C’est la grande famille des memristors, dont la résistance se modifie en fonction des courants électriques qui les ont parcourus dans le passé. Ainsi, on renforce ou affaiblit une ­synapse artificielle en faisant circuler plus ou moins d’électrons. Des matériaux disposant de plus de deux états magnétiques sont aussi de bons candidats. Pour l’instant, seuls des composants de laboratoires de quelques neurones et synapses ont pu être obtenus. Damien Querlioz et Julie Grollier, tous deux financés par le conseil européen de la recherche, estiment que, dans cinq ans, un composant bio-inspiré sera possible, consommant mille fois moins d’énergie et tenant sur un centimètre carré. Voir l'article du monde
    LE MONDE SCIENCE ET TECHNO | 09.01.2017 à 17h52
    Par David Larousserie


  • 16

    12/2016

    Efficient light trapping in ultrathin silicon solar cells


      Stéphane COLLIN.

    Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material, while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T<275°C), low-cost and scalable techniques. Epitaxial c-Si layers are grown by PECVD at 160°C and transferred on a glass substrate by anodic bonding and mechanical cleavage. A silver back mirror is combined with a front texturation based on an inverted nanopyramid array fabricated by nanoimprint lithography and wet etching. We demonstrate a short-circuit current density of 25.3 mA/cm² for an equivalent thickness of only 2.75µm. External quantum efficiency (EQE) measurements are in very good agreement with FDTD simulations. We infer an optical path enhancement of 10 in the long wavelength range. A simple propagation model reveals that the low photon escape probability of 25% is the key factor in the light trapping mechanism. The main limitations of our current technology and the potential efficiencies achievable with contact optimization are discussed. Reference: Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping, A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca i Cabarrocas and S. Collin, Nano Letters 16, 5358–5364 (2016). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b01240

  • 16

    12/2016

    Bi-periodic nanostructured waveguides for wavelength-selectivity of hybrid photonic devices


      Anne TALNEAU.

    A bi-periodic nanostructuration consisting of a super-periodicity added to a nanohole lattice of sub-wavelength pitch is demonstrated to provide both modal confinement and wavelength selectivity within a hybrid III-V on Silicon waveguide. The wavelength selective behavior stems from finely-tuned larger holes. Such bi-periodic hybrid waveguides have been fabricated by oxide-free bonding III-V material on Silicon and display well defined stopbands. Such nanostructured waveguides offer the versatility for designing advanced optical functions within hybrid devices. Moreover, keeping the silicon waveguide surface planar, such nanostructured waveguides are compatible with electrical operation across the oxide-free hybrid interface. http://dx.doi.org/10.1364/OL.40.005148

  • 16

    12/2016

    Lasers à microdisque sur silicium fonctionnant dans l’ultra-violet profond


      Philippe BOUCAUD.

    Un consortium constitué du L2C, CRHEA, CEA-Inac et C2N a fait la démonstration de lasers à microdisque fonctionnant à température ambiante dans l’ultra-violet profond. L’originalité de ces lasers est d’être constitués d’une couche active très fine en matériau III-N directement épitaxiée sur substrat silicium. Ceci permet de fabriquer simplement des microrésonateurs (microdisques, cristaux photoniques) de faible épaisseur (< 100 nm) avec de forts facteurs de qualité. En variant la composition de la zone active, on peut ajuster la longueur d’onde d’émission des lasers de 275 nm à 470 nm. http://www.cnrs.fr/inp/spip.php?article4581 "Deep-UV nitride-on-silicon microdisk lasers" J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, B. Gayral Nature Scientific Reports 6, 21650 (2016) www.nature.com/articles/srep21650 "Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators" I. Roland, Y. Zeng, X. Checoury, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, M. Gromovyi, J. Y. Duboz, F. Semond, M. P. de Micheli, and P. Boucaud Optics Express 24, 9602 (2016) https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-9-9602

  • 16

    12/2016

    Exchange interaction-driven dynamic nuclear polarization in Mn-doped InGaAs/GaAs quantum dots


      Olivier KREBS.

    The optical spin orientation and subsequent dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots doped by a single Mn atom is shown to be strongly perturbed by the exchange interaction between a photo-created electron and the spin of the magnetic impurity. The anisotropic part of the exchange, if strong enough , significantly depolarizes the electron spin in moderate magnetic fields, preventing thus any DNP. Yet, for small anisotropies, a pronounced DNP develops in an external magnetic field and shows a remarkable succession of rises interrupted by abrupt falls (evidenced by spectral jumps in the magneto-PL image). This striking behavior reveals the contribution of the exchange interactions to the energy cost of electron-nucleus spin flip-flops which drives the DNP efficiency. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.195412

  • 15

    12/2016

    Flexible nitride nanowires light emitting diodes


      Maria TCHERNYCHEVA.

    Presently, flexible light sources mainly use organic materials integrated on lightweight and flexible plastic substrates. However, organic LEDs present a much lower luminance and a shorter lifetime in comparison to the LEDs based on inorganic nitride semiconductors. The inorganic semiconductor devices in their bulk form are mechanically rigid. Polymer-embedded nanowires (NWs) offer an elegant solution to create flexible optoelectronic devices, which combine the high efficiency and the long lifetime of inorganic semiconductor materials with the high flexibility of polymers. In our recent work we have fabricated NW light emitters, which can sustain large deformations. NW arrays embedded in a flexible film and lifted-off from their native substrate were contacted with a silver NW mesh. The lift-off and transfer procedure enables the assembly of free-standing layers of NW materials with different bandgaps without any constraint related to lattice-matching or growth conditions compatibility [1]. This concept therefore allows for a large design freedom and modularity since it enables combination of materials with very different physical and chemical properties, which cannot be achieved by monolithic growth. NW membranes with different properties were assembled in a two-color LED [1]. Combined with nano-phosphors, white flexible LEDs were demonstrated [2]. [1] http://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b02900 [2] http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00696

  • 15

    12/2016

    Flexible nitride nanowires light emitting diodes


      Maria TCHERNYCHEVA.

    Presently, flexible light sources mainly use organic materials integrated on lightweight and flexible plastic substrates. However, organic LEDs present a much lower luminance and a shorter lifetime in comparison to the LEDs based on inorganic nitride semiconductors. The inorganic semiconductor devices in their bulk form are mechanically rigid. Polymer-embedded nanowires (NWs) offer an elegant solution to create flexible optoelectronic devices, which combine the high efficiency and the long lifetime of inorganic semiconductor materials with the high flexibility of polymers. In our recent work we have fabricated NW light emitters, which can sustain large deformations. NW arrays embedded in a flexible film and lifted-off from their native substrate were contacted with a silver NW mesh. The lift-off and transfer procedure enables the assembly of free-standing layers of NW materials with different bandgaps without any constraint related to lattice-matching or growth conditions compatibility [1]. This concept therefore allows for a large design freedom and modularity since it enables combination of materials with very different physical and chemical properties, which cannot be achieved by monolithic growth. NW membranes with different properties were assembled in a two-color LED [1]. Combined with nano-phosphors, white flexible LEDs were demonstrated [2]. Lien web (si disponible): [1] http://pubs.acs.org/doi/full/10.1021/acs.nanolett.5b02900 [2] http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00696

  • 9

    12/2016

    le C2N est un partenaire du réseau Européen NFFA pour la nanofabrication


      C2N.

    le C2N est un partenaire du réseau Européen NFFA pour la nanofabrication

  • 1

    12/2016

    ERC Consolidator HYPNOTIC (Hybrid Indium Phosphide on Silicon nanophotonics for ultimate laser diode


      Fabrice Raineri.

    The HYPNOTIC project aims at achieving a breakthrough in Silicon laser science and technology by taking forward the III-V semiconductors on Silicon hybrid technology into the nanophotonic world to make the dream of the convergence of microelectronics and photonics on a chip come true. This project intends to take up the challenge of bringing to reality electrically powered photonic crystal nanolasers as reference sources for dense integration and logical processing in a Silicon-based optical platform by accomplishing: (i) power efficiency with extremely low activation energies of few fJ, (ii) high bandwidth beyond 40Gbits/s, (iii) compactness with footprints less than 100µm² for high integration density of 103-104 of devices per mm2. A paradigm change will be brought to Silicon photonics by laying down 3 corner stones which consist firstly in the realisation of ultimate nanolaser diode sources at telecom wavelengths using an optimised single hybrid active nanocavity. Secondly, the groundbreaking atomic physics concepts of superradiance and lasing without inversion of population resonators will be transposed to nanophotonics by coupling several active nanocavities. Besides studying them for their fundamental interest, the project will capitalise on them to drastically augment the power efficiency and the modulation bandwidth of the nanosources. Finally, the fabricated nanolaser diodes using these novel concepts will be exploited to demonstrate cutting-edge flip-flop and memory devices able to surpass current off-chip electronic random access memories in access times and bandwidth which could enable unprecedented computational power.

  • 16

    11/2016

    Remise de prix pour le projet GOSPEL


      Delphine MORINI.

    Delphine Morini s'est vu décernée le Prix de l'impact sociétal de l' ANR pour le projet GOSPEL: PROPRIÉTÉS OPTIQUES LIÉES À LA BANDE INTERDITE DIRECTE DANS LES MULTI-PUITS QUANTIQUES Ge/SiGe

  • 16

    11/2016

    GOsPEL project awarded from the Societal impact Prize from the Research National Agency ANR (2016)


      delphine MORINI.

    In the information age, the reduction of the power consumption of information systems, and especially in the data centers will have major impact. The development of high data rate and low power consumption optical links to replace electrical interconnects is among the main challenges in silicon photonics. In this context, the GOsPEL project aimed at the demonstration of new optical integrated platforms based on Ge/SiGe quantum wells. This project tackled both the theoretical and experimental study of physical properties of quantum well structure and the demonstration of high performance photonic devices. Among the main results, a compact (< 100 µm) and low power consumption (<100 fJ/bit) optical modulator was obtained, and an optical link on a chip was demonstrated. This last result, published in Nature Photonics, showed the potential of these structures as innovative and powerful low power consumption optical platform. This project was awarded from the Societal impact Prize during the “Rencontres du numérique de l’ANR” on 16-17 November 2016.

  • 28

    06/2016

    June 28th 2016 – Laying of the cornerstone of C2N


      Giancarlo Faini.

    The ceremony of the laying of the cornerstone of C2N will take place on June 28th 2016, in the presence of Thierry Mandon, State Secretary at the Ministry for Education, Higher Education and Research in charge of Higher Eduction and Research, Sylvie Retailleau, President of the University Paris-Sud, and of Alain Fuchs, President of the CNRS, Centre National de la Recherche Scientifique. This event will be the opportunity to unveil a model of « mastaba » representing the engineered structures designed to host the instruments that are the most sensitive to mechanical vibrations and require stringent conditions in terms of ground stability. https://www.universite-paris-saclay.fr/fr/actualite/premiere-pierre-du-centre-de-nanosciences-et-de-nanotechnologies

  • 20

    06/2016

    Contrôler la photoluminescence des nanotubes de carbone


      Frédérique Pierre.

    En déposant des nanotubes de carbone sur des micro-résonateurs en forme d’anneau, des chercheurs de l'Institut d'électronique fondamentale (IEF, CNRS/Université Paris-Sud) sont parvenus à contrôler finement la lumière émise par les nanotubes. Adaptés à des dispositifs complexes, cette technologie pourrait permettre de maitriser des futures applications dans les télécommunications optiques ou les circuits intégrés pour la microélectronique. Ces travaux sont publiés dans la revue Nanotechnology.

  • 2

    06/2016

    Conclusion of a cooperation agreement with the Korea Electronics Technology Institute


      Amanda Trepagny.

    On 2/6/2016, during the economic forum organized by the French Business Confederation (MEDEF) and the Federation of Korean Industries (FKI), a cooperation agreement was signed between the Paris Sud University, represented by its President Sylvie Retailleau, and the KETI (Korea Electronics Technology Institute).
    The conclusion of this agreement has been made possible, in particular due to the interest of KETI for the research activities undertaken by the team of Elie Lefeuvre in the C2N department of Microsystems and Nanobiofluidics. More details in the press release here.

  • 1

    06/2016

    Birth of C2N


      Giancarlo Faini.

    Established on June 1st 2016, the Center for Nanosciences and Nanotechnologies (C2N) was launched in the wake of the joint CNRS and Université Paris-Sud decision to merge and gather on the same campus site the Laboratory for Photonics and Nanostructures (LPN) and the Institut d’Electronique Fondamentale (IEF). Its location on the École Polytechnique district of the Paris-Saclay campus, will be completed in 2017, the new C2N buildings being under construction.

  • 1

    06/2016

    Coherent control of an artificial atom with few photons


      Pascale SENELLART.

    In an optical quantum network, the information is transferred from one node to an other through light. A possible building block for such quantum network is an atom in a cavity. Ideally, every photon sent on the node should interact with the atom. Researchers at C2N, in collaboration with Institut Néel (Grenoble, France) have demonstrated the coherent control of an artificial atom with few photons. The quantum node here is a semiconductor quantum dot deterministically positioned in a microcavity. The results also show that, the same measurement performed with single photon Fock state of light, would allow inverting the atom state with 55% probability. These results are published in Nature Communications (open access). http://www.nature.com/ncomms/2016/160617/ncomms11986/full/ncomms11986.html

  • 24

    03/2016

    Jacqueline Bloch lauréate du Prix Jean Ricard


      Jacqueline Bloch.

    Le 24 mars dernier, Jacqueline Bloch a reçu des mains de Michel Spiro, président de la Société française de physique, le prix Jean Ricard 2016, qui récompense le remarquable travail effectué et qu’elle poursuit au sein du LPN à Marcoussis, dans le domaine de la spectroscopie des nanostructures semi-conductrices, de l’optique non-linéaire et de l’optique quantique. http://www.cnrs.fr/inp/spip.php?article4447 https://www.sfpnet.fr/laureate-du-prix-jean-ricard-2015-jacqueline-bloch

  • 1

    03/2016

    Near optimal single photon sources in the solid-state


      Pascale SENNELLART.

    Researchers at C2N, in collaboration with Institut Néel (Grenoble, France) and University of Queensland (Australia), have fabricated single photon sources based on semiconductor quantum dots of unprecedented quality. They succeeded in combining a unique technique invented in 2008 to position a quantum dot at the center of a micropillar acting as an optical cavity and an electrical control to remove the charge noise. They demonstrated the controlled and reproducible fabrication of bright sources of single photons that are nearly identical (to more than 99.5%). Their work shows that, compared to current technologies, these sources are about 15 times brighter than the heralded single photon sources based on frequency conversion. These results, published in Nature Photonics, open many perspectives for the optical quantum technologies. http://www.nature.com/nphoton/journal/v10/n5/full/nphoton.2016.23.html