Soutenance de thèse

  • semin image

    (en anglais) Shaping tungsten dichalcogenides properties by chemical vapor deposition of alloys and polytypes

    C2N - Centre de Nanosciences et de Nanotechnologies, , Palaiseau

    Gaia DI BERARDINO

    Centre de Nanosciences et de Nanotechnologies, C2N, Palaiseau

    Soutenance de thèse

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) present varied optical and electronic properties associated with their different crystal structures. We optimize here the chemical vapor deposition (CVD) of tungsten-based TMDs, such as hexagonal (1H) WSe2 and WS2 monolayers, as well as monoclinic (1T’) WTe2. While 1H WSe2 and WS2 are typically direct band-gap semiconductors in the monolayer form, the anisotropic 1T' WTe2 is a small band gap topological insulator. Our purpose is to study the structural and electronic phase transition of ternary alloy WSe2xTe2(1-x) between the 1H and 1T' crystal structures. However, the synthesis of the mid-composition (x~0.5) alloys by CVD remains challenging. By just adding an additional monolayer, we obtain bilayer (2ML) structures, in which the available polytypes combinations, and the relative physical properties, are even richer. We further optimize our CVD growth methods to maximize the yield of 2ML hexagonal WSe2 and WS2. In addition to Raman and photoluminescence spectroscopies, we employ various other experimental techniques, including second harmonic generation and selective area electron diffraction, to discern between the 2ML polytypes. We then focus on the 3R bilayer stacking of WSe2 and we resolve its electronic band structure by angle-resolved photoemission spectroscopy.

  • semin image

    (en anglais) Machine Learning-Driven First-Principles Modeling of Far-Infrared Materials

    C2N - Centre de Nanosciences et de Nanotechnologies, ,

    Ritwik DAS

    Centre de Nanosciences et de Nanotechnologies, C2N, Palaiseau

    Soutenance de thèse

    Abstract 

    This thesis focuses on the modeling of narrow-gap far-infrared semiconductors, ternary alloys, and heterovalent heterostructures. To overcome the limitations of conventional Density Functional Theory (DFT), a Bayesian Machine (BMach) framework [2] is developed to optimize internal DFT meta-parameters, such as the Hubbard U in DFT+U and the mixing (α) and screening (μ) parameters in hybrid exchange–correlation functionals. These parameters are benchmarked against quasiparticle corrections obtained from Green’s function–based quasiparticle-GW (G₀W₀) calculations, with BMach employing Gaussian process regression (GPR) and physics-informed loss functions.

    Applied to the benchmark semiconductors InSb and InAs, BMach accurately reproduces experimental band gaps, effective masses, and Luttinger parameters at significantly reduced computational cost [1]. The study further explores CuPt-ordered InAsₓSb₁₋ₓ alloys across the full composition range using both supercell and Virtual Crystal Approximation (VCA) approaches; notably, the VCA-based G₀W₀ method yields a bowing parameter of 0.838 eV, in excellent agreement with experiment. Finally, the band alignment at the CdTe/InSb(001) heterointerface is determined using the potential-lineup method with BMach-calibrated parameters, confirming a type-I alignment consistent with experimental observations.

    This work establishes a transferable and extensible computational framework for high-fidelity electronic-structure predictions across diverse material systems, with direct relevance for future electronic, optoelectronic, energy, and quantum technologies.

  • semin image

    Accélérateurs de particules sur puce

    C2N - Centre de Nanosciences et de Nanotechnologies, , Palaiseau

    Imene SI HADJ MOHAND

    Centre de Nanosciences et de Nanotechnologies, C2N, Palaiseau

    Soutenance de thèse

    La présente thèse explore le développement d’un accélérateur de particules miniaturisé intégré sur une puce en silicium, en réponse aux défis posés par les infrastructures colossales et les coûts élevés des accélérateurs conventionnels (CERN, XFEL, SOLEIL). S’appuyant sur le concept des accélérateurs lasers diélectriques, le dispositif proposé exploite l’interaction entre un faisceau d’électrons et un champ électrique confiné dans une cavité à cristal photonique. Ce principe repose sur l’accord de phase entre la vitesse des électrons et celle du champ, rendu possible grâce à une conception précise de nanostructures en silicium suspendu, offrant un fort confinement optique, un faible volume modal et une compatibilité avec les techniques de fabrication de l’industrie des semi-conducteurs. Le travail de recherche comprend : la conception et la modélisation des cristaux photoniques pour optimiser l’accord de phase et le transfert d’énergie, le développement d’une solution innovante de couplage optique par injection fibrée adaptée aux contraintes d’un microscope électronique à transmission et la mise en place d'une solution technologique afin d'éviter l'accumulation de charges sur la structure lors du passage du faisceau d'électrons. Les structures ont été fabriquées en salle blanche par des techniques avancées de nanofabrication. Les dispositifs réalisés ont été caractérisés par des mesures de leur facteur de qualité, de leur fréquence de résonance et par des expériences d’EELS, permettant d’évaluer l’efficacité du couplage entre les électrons et les modes des cavités. L’efficacité du couplage optique de la structure fibre-puce développée a également été mesurée afin d’optimiser les performances du dispositif. Les résultats obtenus dans cette thèse contribuent de manière générale à la photonique silicium et plus particulièrement à la démonstration du fort potentiel des structures développées pour l’accélération de particules sur puce et ouvrent la voie à des applications prometteuses en physique des hautes énergies, en imagerie et dans le développement de sources de rayonnement compactes.

  • semin image

    (en anglais) High-fidelity photonic quantum information : protocols and universal circuit control

    C2N - Centre de Nanosciences et de Nanotechnologies, , Palaiseau

    Andreas Fyrillas

    Centre de Nanosciences et de Nanotechnologies, C2N, Palaiseau

    Soutenance de thèse

    Abstract 

    In this PhD thesis, we advance integrated photonics for quantum information processing by improving the calibration and control of photonic integrated circuits (PICs). PICs enable compact and stable light manipulation for a wide range of applications in optics. We demonstrate quantum protocols on specialized PICs, including the first on-chip certified randomness generation and high-fidelity 4-GHZ state tomography. In universal PIC architectures, we develop a machine learning-assisted characterization technique to mitigate hardware imperfections, achieving a record 99.77% fidelity in unitary operations on a 12-mode interferometer. Finally, we refine crosstalk models and propose a robustness criterion for interferometer design, enhancing PIC control accuracy. Our results, including a patented machine learning-based method, contribute to both quantum and classical integrated photonics, advancing scalable photonic quantum computing.

    Figure : Photonic integrated circuits (PICs) consist of waveguides (blue lines) guiding light across a slab of transparent material. PICs often exhibit various imperfections resulting from fabrication constraints, tolerances, and operation wavelength, illustrated here on a simplified PIC. In general, input and output ports have different optical transmissions. In addition, the actual beamsplitter reflectivity values deviate from the target. Phase shifters (purple components) dissipating heat entail that all the implemented physical phase shifts depend on all the applied voltages. Finally, optical path variations lead to non-zero phase shifts even without any voltages applied. We use machine-learning to find suitable values for each of these parameters.